Parameter Table

Follow

The Parameter Table is a feature in Designer that allows users to parameterise primitive geometry properties. These parameters can be set to varying parameters to enable them to be swept over a range of values.

Set Up

To make use of the parameter table you need to create a new project and ensure Model Type is set to 3D Model. Primitives can only be accessed with 3D models.

Once a project has been created the user can access the parameter table. 

Using the Parameter Table

Parameters can be created and can be set as a primitive property value. To add a parameter click the '+' icon in the parameter table 

This will bring up the 'Add a New Parameter' window where parameters can be defined. Parameters can have characters in their name but be all one word. In the window you must specify a name and value, here they the user can choose to set to varying parameter which enables parameters to be swept on the cloud. To set a parameter as a property value of a primitive you must first enable that property to be able to use parameters.This is done by simply selecting the small  icon next to the property and selecting Use parameter for property.

2018_10_08_16_19_15_.png

If the small check box under the Varying column has been selected, if you click run on cloud the parameter will be shown as a variable that can be swept in the cloud schedulers symbx table.

Parameter Table Calculations

Calculations are permitted in the parameter table to allow properties of geometries to depend on one another. These calculations must be entered in the value field of the parameter table and must always start with an equals sign e.g. =2 + $height. When referencing other parameters there is not a requirement for the dollar sign before the parameter name, but this may be a habit of some Analyst users and is accepted. The lists of accepted functions, constants and operators are below.

One Argument

Note: All trigonometric functions operate in radians

Function

Description

Example

sin

sine

=sin($angle), if angle = 90, ans = 0.8940

asin

inverse sine

=asin($angle), if angle = 1, ans = 1.5708

sinh

hyperbolic sine

=sinh($angle), if angle = 1, ans = 1.1752

asinh

inverse hyperbolic sine

=asinh($angle), if angle = 90, ans = 5.1930

cos

cosine

=cos($angle), if angle = 45, ans = 0.5253

acos

inverse cosine

=acos($angle), if angle  = 1, ans = 0

cosh

hyperbolic cosine

=cosh($angle), if angle = 1, ans= 1.5431

acosh

inverse hyperbolic cosine

=acosh($angle), if angle = 90, ans = 5.1929

tan

tangent

=tan($angle), if angle = 45, ans = 1.6198

atan

inverse tangent

=atan($angle), if angle = 45, ans = 1.5486

tanh

hyperbolic tangent

=tanh($angle), if angle = 1, ans = 0.7616

atanh

inverse hyperbolic tangent 

=atanh($angle), if angle = 1, ans = inf

sqrt 

square root

=sqrt($height), if height = 4, ans = 2

exp

exponential

=exp($height), if height = 1, ans = 2.7183

log

natural logarithm

=log($height), if height = 10, ans = 2.3026

log10

common logarithm

=log10($height), if height = 10, ans = 1

fabs

absolute value

=fabs($height), if height = -10, ans = 10

ceil 

ceiling 

=ceil($height), if height = 10.4, ans = 11

floor

floor

=floor($height), if height = 10.4, ans = 10

Two Arguments

Function

Description

Example

pow

power

=pow($height,$height), if height = 2, ans = 4

hypot

hypotenuse

=hypot($height,$length), if height = 1 & length = 2, ans = 2.2361

fmod

modulus

=fmod($height,$length), if height = 3 & length = 2, ans = 1

min

minimum value

=min($height,$length), if height = 3 & length = 2, ans = 2

max

maximum value

=max($height,$length), if height = 3 & length = 2,

ans = 3

Constants

Function

Description

Example

pi

pi = 3.1416

=2 * pi, ans = 6.2832

M_PI

pi = 3.1416

=2 * M_PI, ans = 6.2832

M_PI_2

pi/2 = 1.5708

=2 * M_PI_2 = 3.1416

M_PI_4

pi/4 = 0.7854

=2 * M_PI_4 = 1.5708

e

mathematical constant = 2.7183

= e - 1 = 1.17183

M_LN2

p1.PNG= 0.6931

=2 * M_LN2 = 1.3862

M_LN10

p2.PNG= 2.3026

=2 * M_L10 = 4.6052

M_SQRT2

square root of 2 = 1.4142

=2 * M_SQRT2 = 2.8284

Operators

Function

Description

Example

+

plus

=$b1 + $b2, if b1 = 3 & b2 = 5, ans = 8

-

minus

=$b2 - $b1, if $b1 = 3 & b2 = 5, ans = 2

*

multiply

=$b1 * $b2, if $b1 = 3 & b2 = 5, ans = 15

/

divide

=$b1/b2, if b1 = 12 % b2 = 6, ans = 2

()

brackets

=$b1 * ($b2 + $b3 ), if b1 = 2, b2 = 3 and b3 = 4, ans = 14

^

exponential power

=$b1^2, if b1 = 2, ans = 4

=

equals

=2

0 out of 0 found this helpful

1 comment

  • All the trig functions operate on radians. It would be easy to mention at the top of the table.

    Comment actions Permalink

Please sign in to leave a comment.