Parameter Table

The Parameter Table is a feature in Designer that allows users to parameterise primitive geometry properties. These parameters can be set to varying parameters to enable them to be swept over a range of values.

Set Up

To make use of the parameter table you need to create a new project and ensure Model Type is set to 3D Model. Primitives can only be accessed with 3D models.

Once a project has been created the user can access the parameter table.

Using the Parameter Table

Parameters can be created and can be set as a primitive property value. To add a parameter click the '+' icon in the parameter table

This will bring up the 'Add a New Parameter' window where parameters can be defined. Parameters can have characters in their name but be all one word. In the window you must specify a name and value, here they the user can choose to set to varying parameter which enables parameters to be swept on the cloud. To set a parameter as a property value of a primitive you must first enable that property to be able to use parameters.This is done by simply selecting the small  icon next to the property and selecting Use parameter for property.

If the small check box under the Varying column has been selected, if you click run on cloud the parameter will be shown as a variable that can be swept in the cloud schedulers symbx table.

Parameter Table Calculations

Calculations are permitted in the parameter table to allow properties of geometries to depend on one another. These calculations must be entered in the value field of the parameter table and must always start with an equals sign e.g. =2 + \$height. When referencing other parameters there is not a requirement for the dollar sign before the parameter name, but this may be a habit of some Analyst users and is accepted. The lists of accepted functions, constants and operators are below.

One Argument

Note: All trigonometric functions operate in radians

Function Description Example
sin sine =sin(\$angle), if angle = 90, ans = 0.8940
asin inverse sine =asin(\$angle), if angle = 1, ans = 1.5708
sinh hyperbolic sine =sinh(\$angle), if angle = 1, ans = 1.1752
asinh inverse hyperbolic sine =asinh(\$angle), if angle = 90, ans = 5.1930
cos cosine =cos(\$angle), if angle = 45, ans = 0.5253
acos inverse cosine =acos(\$angle), if angle  = 1, ans = 0
cosh hyperbolic cosine =cosh(\$angle), if angle = 1, ans= 1.5431
acosh inverse hyperbolic cosine =acosh(\$angle), if angle = 90, ans = 5.1929
tan tangent =tan(\$angle), if angle = 45, ans = 1.6198
atan inverse tangent =atan(\$angle), if angle = 45, ans = 1.5486
tanh hyperbolic tangent =tanh(\$angle), if angle = 1, ans = 0.7616
atanh inverse hyperbolic tangent =atanh(\$angle), if angle = 1, ans = inf
sqrt square root =sqrt(\$height), if height = 4, ans = 2
exp exponential =exp(\$height), if height = 1, ans = 2.7183
log natural logarithm =log(\$height), if height = 10, ans = 2.3026
log10 common logarithm =log10(\$height), if height = 10, ans = 1
fabs absolute value =fabs(\$height), if height = -10, ans = 10
ceil ceiling =ceil(\$height), if height = 10.4, ans = 11
floor floor =floor(\$height), if height = 10.4, ans = 10

Two Arguments

Function Description Example
pow power =pow(\$height,\$height), if height = 2, ans = 4
hypot hypotenuse =hypot(\$height,\$length), if height = 1 & length = 2, ans = 2.2361
fmod modulus =fmod(\$height,\$length), if height = 3 & length = 2, ans = 1
min minimum value =min(\$height,\$length), if height = 3 & length = 2, ans = 2
max maximum value =max(\$height,\$length), if height = 3 & length = 2, ans = 3

Constants

Function Description Example
pi pi = 3.1416 =2 * pi, ans = 6.2832
M_PI pi = 3.1416 =2 * M_PI, ans = 6.2832
M_PI_2 pi/2 = 1.5708 =2 * M_PI_2 = 3.1416
M_PI_4 pi/4 = 0.7854 =2 * M_PI_4 = 1.5708
e mathematical constant = 2.7183 = e - 1 = 1.17183
M_LN2 = 0.6931 =2 * M_LN2 = 1.3862
M_LN10 = 2.3026 =2 * M_L10 = 4.6052
M_SQRT2 square root of 2 = 1.4142 =2 * M_SQRT2 = 2.8284

Operators

Function Description Example
+ plus =\$b1 + \$b2, if b1 = 3 & b2 = 5, ans = 8
- minus =\$b2 - \$b1, if \$b1 = 3 & b2 = 5, ans = 2
* multiply =\$b1 * \$b2, if \$b1 = 3 & b2 = 5, ans = 15
/ divide =\$b1/b2, if b1 = 12 % b2 = 6, ans = 2
() brackets =\$b1 * (\$b2 + \$b3 ), if b1 = 2, b2 = 3 and b3 = 4, ans = 14
^ exponential power =\$b1^2, if b1 = 2, ans = 4
= equals =2